شناسایی ترکیب غیرمسلط عوامل کنترلی در مسأله چندپاسخه با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده فنی
- نویسنده امیر فرشباف گرانمایه
- استاد راهنما مهدی بشیری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1391
چکیده
در بیشتر مسائل صنعتی نیازمند یافتن بهترین ترکیب عوامل کنترلی برای بهینه سازی همزمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضاد می باشند، هستیم. روش معمول برای حل اینگونه مسائل استفاده از رگرسیون چندجمله ای برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالیکه شبکه عصبی مصنوعی (ann) در حالاتی که این روابط پیچیده باشد قابلیت مناسبتری از خود نشان می دهند. عملکرد شبکه عصبی مصنوعی به شدت تحت تأثیر اندازه و پارامترهای انتخاب شده برای آموزش آن می باشد. بنابراین انتخاب ساختار بهینه شبکه عصبی مصنوعی از اهمیت ویژه ای برخوردار است. در این پژوهش رویکردی مبتنی بر طرح مرکب مرکزی (ccd) و الگوریتم ژنتیک (ga) برای تنظیم پارامترهای شبکه عصبی مصنوعی جهت عملکرد بهتر آن در شناسایی روابط بین متغیرهای پاسخ و عوامل کنترلی ارائه شده است. در مسائل چند پاسخه، برای تصمیم گیرنده ارائه جواب های غیر مسلط (nds) مطلوب تر از ارائه صرفاً جواب مرجح می باشد. چرا که از یک طرف گزینه های بیشتری که نسبت به یکدیگر غیرمسلط هستند، پیش روی تصمیم گیر جهت انتخاب قرار دارد و از سوی دیگر جواب بهینه حاصل از سایر رویکردها خود یکی از جواب های غیر مسلط بدست آمده خواهد بود. در این پایان نامه، بر خلاف حالت های بکار برده شده، متغیرهای پاسخ به عنوان ورودی و عوامل کنترلی به عنوان خروجی شبکه عصبی مصنوعی در نظر گرفته شده اند تا با ترکیب شبکه عصبی و الگوریتم ژنتیک بتوان ترکیبات غیرمسلط کارایی در مسأله چندپاسخه ارائه داد. قابلیت روش ارائه شده در قالب مثال عددی بیان شده است که نشان دهنده ی کارایی روش پیشنهادی نسبت به سایر رویکردهای موجود می باشد.
منابع مشابه
شناسایی ترکیب غیرمسلط عوامل کنترلی در مسئلهی چندپاسخه با استفاده از شبکهی عصبی مصنوعی و الگوریتم ژنتیک
شروع{چکیده} یافتن بهترین ترکیب عوامل کنترلی برای بهینهسازی توأمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضادند، یکی از مهمترین نیازهای مسائل صنعتی است. روش معمول برای حل اینگونه مسائل استفاده از رگرسیون چندجملهیی برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالی که شبکهی عصبی مصنوعی در حالاتی که این روابط پیچیده باشد قابلیت مناسبتری از خود نشان میدهند. در این نوشتار، ...
متن کاملشناسایی ترکیب غیرمسلط عوامل کنترلی در مسئله ی چندپاسخه با استفاده از شبکه ی عصبی مصنوعی و الگوریتم ژنتیک
شروع{چکیده} یافتن بهترین ترکیب عوامل کنترلی برای بهینه سازی توأمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضادند، یکی از مهم ترین نیازهای مسائل صنعتی است. روش معمول برای حل این گونه مسائل استفاده از رگرسیون چندجمله یی برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالی که شبکه ی عصبی مصنوعی در حالاتی که این روابط پیچیده باشد قابلیت مناسب تری از خود نشان می دهند. در این نوشتار، برخل...
متن کاملپیشبینی شاخص سهام با استفاده از ترکیب شبکه عصبی مصنوعی و مدلهای فرا ابتکاری جستجوی هارمونی و الگوریتم ژنتیک
هدف پژوهش حاضر پیشبینی شاخص قیمت بورس اوراق بهادار تهران با استفاده از مدل شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی است. مربوطترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون در لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتمهای فراابتکاری ژنتیک و جستجوی هارمونی حاصل میگردد. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ 1/10/91 الی 30/9/94 جهت ...
متن کاملمدلسازی فرایند تبدیل خشک متان بهکمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
پیشبینی فراوردههای (هیدروژن و کربن مونوکسید) تبدیل خشک متان بهکمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیهسازی شد. دادههای تجربی موردنیاز برای مدلسازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمعآوری شد. اثر عاملهای فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینشپذیری نسبت به فراوردههای مورد بررسی قرار گرفتند. شبکه پیشخور با الگوری...
متن کاملبهینهسازی فرایندهای عملیاتی پیش تصفیه آب صنعتی با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک
متن کامل
شناسایی دستکاری قیمت سهام از طریق مدل ترکیبی الگوریتم ژنتیک – شبکه عصبی مصنوعی و مدل SQDF
هدف این پژوهش، شناسایی دستکاری قیمت سهام در بورس اوراق بهادار تهران میباشد که از طریق مدل ترکیبی الگوریتم ژنتیک-شبکه عصبی مصنوعی (ANN-GA)[1] و مدل تابع تفکیکی درجه دوی تعدیل شده (SQDF)[2] انجام گرفته است. در این پژوهش از متغیرهای قیمت، حجم معاملات و سهام شناور آزاد برای تطبیق نتایج مدل و دادههای واقعی از دستکاری قیمت استفاده شده است. در مدل ترکیبی ابتدا دادههای مربوط به 316 شرکت از نخستین رو...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه شاهد - دانشکده فنی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023